alexa Fibrous tissue ingrowth and attachment to porous tantalum.
General Science

General Science

Journal of Biotechnology & Biomaterials

Author(s): Hacking SA, Bobyn JD, Toh K, Tanzer M, Krygier JJ

Abstract Share this page

Abstract This study determined the soft tissue attachment strength and extent of ingrowth to a porous tantalum biomaterial. Eight dorsal subcutaneous implants (in two dogs) were evaluated at 4, 8, and 16 weeks. Upon retrieval, all implants were surrounded completely by adherent soft tissue. Implants were harvested with a tissue flap on the cutaneous aspect and peel tested in a servo-hydraulic tensile test machine at a rate of 5 mm/min. Following testing, implants were dehydrated in a solution of basic fuschin, defatted, embedded in methylmethacrylate, and processed for thin-section histology. At 4, 8, and 16 weeks, the attachment strength to porous tantalum was 61, 71, and 89 g/mm respectively. Histologic analysis showed complete tissue ingrowth throughout the porous tantalum implant. Blood vessels were visible at the interface of and within the porous tantalum material. Tissue maturity and vascularity increased with time. The tissue attachment strength to porous tantalum was three- to six-fold greater than was reported in a similar study with porous beads. This study demonstrated that porous tantalum permits rapid ingrowth of vascularized soft tissue, and attains soft tissue attachment strengths greater than with porous beads. Copyright 2000 John Wiley & Sons, Inc.
This article was published in J Biomed Mater Res and referenced in Journal of Biotechnology & Biomaterials

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]micsonline.com

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords