alexa Finding the active genes in deep RNA-seq gene expression studies.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Next Generation Sequencing & Applications

Author(s): Hart T, Komori HK, LaMere S, Podshivalova K, Salomon DR

Abstract Share this page

Abstract BACKGROUND: Early application of second-generation sequencing technologies to transcript quantitation (RNA-seq) has hinted at a vast mammalian transcriptome, including transcripts from nearly all known genes, which might be fully measured only by ultradeep sequencing. Subsequent studies suggested that low-abundance transcripts might be the result of technical or biological noise rather than active transcripts; moreover, most RNA-seq experiments did not provide enough read depth to generate high-confidence estimates of gene expression for low-abundance transcripts. As a result, the community adopted several heuristics for RNA-seq analysis, most notably an arbitrary expression threshold of 0.3 - 1 FPKM for downstream analysis. However, advances in RNA-seq library preparation, sequencing technology, and informatic analysis have addressed many of the systemic sources of uncertainty and undermined the assumptions that drove the adoption of these heuristics. We provide an updated view of the accuracy and efficiency of RNA-seq experiments, using genomic data from large-scale studies like the ENCODE project to provide orthogonal information against which to validate our conclusions. RESULTS: We show that a human cell's transcriptome can be divided into active genes carrying out the work of the cell and other genes that are likely the by-products of biological or experimental noise. We use ENCODE data on chromatin state to show that ultralow-expression genes are predominantly associated with repressed chromatin; we provide a novel normalization metric, zFPKM, that identifies the threshold between active and background gene expression; and we show that this threshold is robust to experimental and analytical variations. CONCLUSIONS: The zFPKM normalization method accurately separates the biologically relevant genes in a cell, which are associated with active promoters, from the ultralow-expression noisy genes that have repressed promoters. A read depth of twenty to thirty million mapped reads allows high-confidence quantitation of genes expressed at this threshold, providing important guidance for the design of RNA-seq studies of gene expression. Moreover, we offer an example for using extensive ENCODE chromatin state information to validate RNA-seq analysis pipelines.
This article was published in BMC Genomics and referenced in Journal of Next Generation Sequencing & Applications

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]ine.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords