alexa Finite element analysis of mechanics of neovessels with intraplaque hemorrhage in carotid atherosclerosis.
Microbiology

Microbiology

Journal of Antivirals & Antiretrovirals

Author(s): Lu J, Duan W, Qiao A

Abstract Share this page

Abstract BACKGROUND: Intraplaque hemorrhage is a widely known factor facilitating plaque instability. Neovascularization of plaque can be regarded as a compensatory response to the blood supply in the deep intimal and medial areas of the artery. Due to the physiological function, the deformation of carotid atherosclerotic plaque would happen under the action of blood pressure and blood flow. Neovessels are subject to mechanical loading and likely undergo deformation. The rupture of neovessels may deteriorate the instability of plaque. This study focuses on the local mechanical environments around neovessels and investigates the relationship between the biomechanics and the morphological specificity of neovessels. METHODS: Stress and stretch were used to evaluate the rupture risk of the neovessels in plaque. Computational structural analysis was performed based on two human carotid plaque slice samples. Two-dimensional models containing neovessels and other components were built according to the plaque slice samples. Each component was assumed to be non-linear isotropic, piecewise homogeneous and incompressible. Different mechanical boundary conditions, i.e. static pressures, were imposed in the carotid lumen and neovessels lumen respectively. Finite element method was used to simulate the mechanical conditions in the atherosclerotic plaque. RESULTS: Those neovessels closer to the carotid lumen undergo larger stress and stretch. With the same distance to the carotid lumen, the longer the perimeter of neovessels is, the larger stress and the deformation of the neovessels will be. Under the same conditions, the neovessels with larger curvature suffer greater stress and stretch. Neovessels surrounded by red blood cells undergo a much larger stretch. CONCLUSIONS: Local mechanical conditions may result in the hemorrhage of neovessels and accelerate the rupture of plaque. The mechanical environments of the neovessel are related to its shape, curvature, distance to the carotid lumen and the material properties of plaque.
This article was published in Biomed Eng Online and referenced in Journal of Antivirals & Antiretrovirals

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords