alexa Finite extinction time for the solutions to the Ricci flow on certain three-manifolds
Mathematics

Mathematics

Journal of Physical Mathematics

Author(s): Grisha Perelman

Abstract Share this page

Let M be a closed oriented three-manifold, whose prime decomposition contains no aspherical factors. We show that for any initial riemannian metric on M the solution to the Ricci flow with surgery, defined in our previous paper math.DG/0303109, becomes extinct in finite time. The proof uses a version of the minimal disk argument from 1999 paper by Richard Hamilton, and a regularization of the curve shortening flow, worked out by Altschuler and Grayson.

This article was published in Grisha Perelman and referenced in Journal of Physical Mathematics

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords