alexa Finite-size effects in microrheology.


Journal of Physical Chemistry & Biophysics

Author(s): SantamaraHolek I, Rubi JM

Abstract Share this page

Abstract We propose a model to explain finite-size effects in intracellular microrheology observed in experiments. The constrained dynamics of the particles in the intracellular medium, treated as a viscoelastic medium, is described by means of a diffusion equation in which interactions of the particles with the cytoskeleton are modeled by a harmonic force. The model reproduces the observed power law behavior of the mean square displacement in which the exponent depends on the ratio between particle-to-cytoskeleton-network sizes. This article was published in J Chem Phys and referenced in Journal of Physical Chemistry & Biophysics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 2nd International Conference on Physics
    Aug 28-30, 2017 Brussels, Belgium
  • 5th Global Chemistry Congress
    September 04-06, 2017 London, UK
  • 3rd World Chemistry Conference
    September 11-12, 2017 Dallas, USA
  • Global Conference on Physical Chemistry
    September 18-19, 2017 Dublin, Ireland
  • 2nd International Conference on Applied Chemistry  
    October 16-17, 2017 Toronto, Canada
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version