alexa fMri studies of Stroop tasks reveal unique roles of anterior and posterior brain systems in attentional selection.


Journal of Neurology & Neurophysiology

Author(s): Banich MT, Milham MP, Atchley R, Cohen NJ, Webb A,

Abstract Share this page

Abstract The brain's attentional system identifies and selects information that is task-relevant while ignoring information that is task-irrelevant. In two experiments using functional magnetic resonance imaging, we examined the effects of varying task-relevant information compared to task-irrelevant information. In the first experiment, we compared patterns of activation as attentional demands were increased for two Stroop tasks that differed in the task-relevant information, but not the task-irrelevant information: a color-word task and a spatial-word task. Distinct subdivisions of dorsolateral prefrontal cortex and the precuneus became activated for each task, indicating differential sensitivity of these regions to task-relevant information (e.g., spatial information vs. color). In the second experiment, we compared patterns of activation with increased attentional demands for two Stroop tasks that differed in task-irrelevant information, but not task-relevant information: a color-word task and color-object task. Little differentiation in activation for dorsolateral prefrontal and precuneus regions was observed, indicating a relative insensitivity of these regions to task-irrelevant information. However, we observed a differentiation in the pattern of activity for posterior regions. There were unique areas of activation in parietal regions for the color-word task and in occipitotemporal regions for the color-object task. No increase in activation was observed in regions responsible for processing the perceptual attribute of color. The results of this second experiment indicate that attentional selection in tasks such as the Stroop task, which contain multiple potential sources of relevant information (e.g., the word vs. its ink color), acts more by modulating the processing of task-irrelevant information than by modulating processing of task-relevant information.
This article was published in J Cogn Neurosci and referenced in Journal of Neurology & Neurophysiology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version