alexa Foldamers with heterogeneous backbones.
Pharmaceutical Sciences

Pharmaceutical Sciences

Journal of Applied Pharmacy

Author(s): Horne WS, Gellman SH

Abstract Share this page

Abstract The functions performed by proteins and nucleic acids provide the foundation for life. Chemists have recently begun to ask whether it is possible to design synthetic oligomers that approach the structural and functional complexities of these biopolymers. The study of foldamers, non-natural oligomers displaying discrete folding propensities, has demonstrated that there are several synthetic backbones that exhibit biopolymer-like conformational behavior. Early work in this area focused on oligomers comprised of a single type of monomer subunit, but recent efforts have highlighted the potential of mixed or "heterogeneous" backbones to expand the structural and functional repertoire of foldamers. In this Account, we illustrate the promise of heterogeneous backbone foldamers by focusing on examples containing both alpha- and beta-amino acid residues. Some beta-residues bear protein-like side chains, while others have cyclic structures that confer conformational rigidity. The study of heterogeneous backbone foldamers has several advantages over that of their homogeneous backbone counterparts, including access to many new molecular shapes based on variations in the stoichiometries and patterns of the subunit combinations and improved prospects for side chain diversification. Recent efforts to develop alpha/beta-peptide foldamers can be divided into two conceptually distinct classes. The first includes entities prepared using a "block" strategy, in which alpha-peptide segments and beta-peptide segments are combined to form a hybrid oligomer. The second class encompasses designs in which alpha- and beta-amino acid monomers are interspersed in a regular pattern throughout an oligomer sequence. One alpha/beta-peptide helical secondary structure, containing C=O(i)...H-N(i+4) H-bonds analogous to those in the alpha-helix, has been shown via crystallography to form helix bundle quaternary structures. Desirable biological functions have been elicited from alpha/beta-peptide foldamers. Efforts to mimic naturally occurring host-defense alpha-peptides have yielded new antimicrobial agents and have led to a reexamination of the long-held views regarding structure-activity relationships among these alpha-peptides and their analogues. Foldamers offer new platforms for mimicry of the molecular surfaces involved in specific protein-protein recognition events; recent achievements in the preparation of alpha/beta-peptide inhibitors of the protein-protein interactions involved in apoptotic signaling (e.g., between Bcl-xL and pro-apoptotic partners) have revealed the benefits of employing heterogeneous backbones relative to homogeneous backbones for foldamer-based designs. These initial successes in the development of alpha/beta-peptides exhibiting specific biological activities highlight the potential of heterogeneous backbone foldamers for use in biomedical applications and provide guidelines for future studies into new target functions.
This article was published in Acc Chem Res and referenced in Journal of Applied Pharmacy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords