alexa Folding Kinetics and Unfolded State Dynamics of the GB1 Hairpin from Molecular Simulation.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Glycomics & Lipidomics

Author(s): De Sancho D, Mittal J, Best RB

Abstract Share this page

Abstract The C-terminal β-hairpin of protein G is a 16-residue peptide that folds in a two-state fashion akin to many larger proteins. However, with an experimental folding time of ∼6 μs, it remains a challenging system for all-atom, explicitly solvated, molecular dynamics simulations. Here, we use a large simulation data set (0.7 ms total) of the hairpin at 300 and 350 K to interpret its folding via a master equation approach. We find a separation of over an order of magnitude between the longest and second longest relaxation times, with the slowest relaxation corresponding to folding. However, in spite of this apparent two-state dynamics, the folding rate determined based on a first-passage time analysis depends on the initial conditions chosen, with a nonexponential distribution of first passage times being obtained in some cases. Using the master equation model, we are now able to account quantitatively for the observed distribution of first passage times. The deviation from the expected exponential distribution for a two-state system arises from slow dynamics in the unfolded state, associated with formation and melting of helical structures. Our results help to reconcile recent findings of slow dynamics in unfolded proteins with observed two-state folding kinetics. At the same time, they indicate that care is required in estimating folding kinetics from many short folding simulations. Last, we are able to use the master equation model to obtain details of the folding mechanism and folding transition state, which appear consistent with the "zipper" mechanism inferred from the experiment. This article was published in J Chem Theory Comput and referenced in Journal of Glycomics & Lipidomics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords