alexa Force platform measurements as predictors of falls among older people - a review.
Biomedical Sciences

Biomedical Sciences

Journal of Bioengineering & Biomedical Science

Author(s): Piirtola M, Era P

Abstract Share this page

Abstract BACKGROUND: Poor postural balance is one of the major risk factors for falling. A great number of reports have analyzed the risk factors and predictors of falls but the results have for the most part been unclear and partly contradictory. Objective data on these matters are thus urgently needed. The force platform technique has widely been used as a tool to assess balance. However, the ability of force platform measures to predict falls remains unknown. OBJECTIVE: The purpose of this systematic review was to extract and critically review the findings of prospective studies where force platform measurements have been used as predictors of falls among elderly populations. METHODS: The study was done as a systematic literature review. PubMed, the Cochrane Central Register of Controlled Trials, and CINAHL databases from 1950 to April 2005 were used. The review includes prospective follow-up studies using the force platform as a tool to measure postural balance. RESULTS: Nine original prospective studies were included in the final analyses. In five studies fall-related outcomes were associated with some force platform measures and in the remaining four studies associations were not found. For the various parameters derived on the basis of the force platform data, the mean speed of the mediolateral (ML) movement of the center of pressure (COP) during normal standing with the eyes open and closed, the mean amplitude of the ML movement of the COP with the eyes open and closed, and the root-mean-square value of the ML displacement of COP were the indicators that showed significant associations with future falls. Measures related to dynamic posturography (moving platforms) were not predictive of falls. CONCLUSION: Despite a wide search only a few prospective follow-up studies using the force platform technique to measure postural balance and a reliable registration of subsequent falls were found. The results suggest that certain aspects of force platform data may have predictive value for subsequent falls, especially various indicators of the lateral control of posture. However, the small number of studies available makes it difficult to draw definitive conclusions. Copyright 2006 S. Karger AG, Basel. This article was published in Gerontology and referenced in Journal of Bioengineering & Biomedical Science

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords