alexa Formation of natural biofilms during chlorine dioxide and u.v. disinfection in a public drinking water distribution system.
Pharmaceutical Sciences

Pharmaceutical Sciences

Pharmaceutica Analytica Acta

Author(s): Schwartz T, Hoffmann S, Obst U, Schwartz T, Hoffmann S, Obst U, Schwartz T, Hoffmann S, Obst U, Schwartz T, Hoffmann S, Obst U

Abstract Share this page

Abstract AIMS: The influence of two disinfection techniques on natural biofilm development during drinking water treatment and subsequent distribution is compared with regard to the supply of a high-quality drinking water. METHODS AND RESULTS: The growth of biofilms was studied using the biofilm device technique in a real public technical drinking water asset. Different pipe materials which are commonly used in drinking water facilities (hardened polyethylene, polyvinyl chloride, steel and copper) were used as substrates for biofilm formation. Apart from young biofilms, several months old biofilms were compared in terms of material dependence, biomass and physiological state. Vital staining of biofilms with 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) and the DNA-specific 4',6-diamidino-2-phenylindole (DAPI) staining resulted in a significant difference in physiological behaviour of biofilm populations depending on the disinfection technique. Compared with chlorine dioxide disinfection (0.12-0.16 mg l-1), the respiratory activities of the micro-organisms were increased on all materials during u.v. disinfection (u.v.254; 400 J m-2). The biofilm biocoenosis was analysed by in situ hybridization with labelled oligonucleotides specific for some subclasses of Proteobacteria. Using PCR and additional hybridization techniques, the biofilms were also tested for the presence of Legionella spp., atypical mycobacteria and enterococci. The results of the molecular-biological experiments in combination with cultivation tests showed that enterococci were able to pass the u.v. disinfection barrier and persist in biofilms of the distribution system, but not after chlorine dioxide disinfection. CONCLUSIONS: The results indicated that bacteria are able to regenerate and proliferate more effectively after u.v. irradiation at the waterworks, and chlorine dioxide disinfection appears to be more applicative to maintain a biological stable drinking water. SIGNIFICANCE AND IMPACT OF THE STUDY: As far as the application of u.v. disinfection is used for conditioning of critical water sources for drinking water, the efficiency of u.v. irradiation in natural systems should reach a high standard to avoid adverse impacts on human health.
This article was published in J Appl Microbiol and referenced in Pharmaceutica Analytica Acta

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords