alexa Formulation optimization and topical delivery of quercetin from solid lipid based nanosystems.
Chemical Engineering

Chemical Engineering

Journal of Chemical Engineering & Process Technology

Author(s): Bose S, Du Y, Takhistov P, MichniakKohn B

Abstract Share this page

Abstract The presence of large amounts of reactive oxygen species (ROS) leads to oxidative stress that can damage cell membranes, lead to DNA breakage and cause inactivation of free radical scavenger enzymes, eventually resulting in skin damage. Quercetin is a natural flavonoid that has been shown to have the highest anti-radical activity, along with the ability to act as a scavenger of free radicals and an inhibitor of lipid peroxidation. In this research work, a solvent-free solid lipid based nanosystem has been developed and evaluated for topical delivery of quercetin. Systematic screening of the formulation and process parameters led to the development of a solid lipid (glyceryl dibehenate) based nanosystem using a probe ultrasonication method. The selected variant demonstrated good physical stability for up to 8 weeks at 2-8 °C. Transmission electron microscopy (TEM) images showed spherical particles in the nanometer range. In vitro release studies showed biphasic release of quercetin from the SLN formulation, with an initial burst release followed by prolonged release for up to 24h. In vitro permeation studies using full thickness human skin showed higher amounts of quercetin to be localized within the skin compared to a control formulation with particles in the micrometer range. Such accumulation of quercetin in the skin is highly desirable since the efficacy of quercetin in delaying ultra-violet radiation mediated cell damage and eventual necrosis mainly occurs in the epidermis. Copyright © 2013 Elsevier B.V. All rights reserved. This article was published in Int J Pharm and referenced in Journal of Chemical Engineering & Process Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version