alexa Fragmentation characteristics of collision-induced dissociation in MALDI TOF TOF mass spectrometry.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Proteomics & Bioinformatics

Author(s): Khatun J, Ramkissoon K, Giddings MC

Abstract Share this page

Abstract The identification of proteins by tandem mass spectrometry relies on knowledge of the products produced by collision-induced dissociation of peptide ions. Most previous work has focused on fragmentation statistics for ion trap systems. We analyzed fragmentation in MALDI TOF/TOF mass spectrometry, collecting statistics using a curated set of 2459 MS/MS spectra and applying bootstrap resampling to assess confidence intervals. We calculated the frequency of 18 product ion types, the correlation between both mass and intensity with ion type, the dependence of amide bond breakage on the residues surrounding the cleavage site, and the dependence of product ion detection on residues not adjacent to the cleavage site. The most frequently observed were internal ions, followed by y ions. A strong correlation between ion type and the mass and intensity of its peak was observed, with b and y ions producing the most intense and highest mass peaks. The amino acids P, W, D, and R had a strong effect on amide bond cleavage when situated next to the breakage site, whereas residues including I, K, and H had a strong effect on product ion observation when located in the peptide but not adjacent to the cleavage site, a novel observation.
This article was published in Anal Chem and referenced in Journal of Proteomics & Bioinformatics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 9th International Conference on Bioinformatics
    October 23-24, 2017 Paris, France
  • 9th International Conference and Expo on Proteomics
    October 23-25, 2017 Paris, France

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords