alexa Free radicals production and estimation of oxidative stress related to gamma irradiation.
Biochemistry

Biochemistry

Biochemistry & Analytical Biochemistry

Author(s): Dubner D, Gisone P, Jaitovich I, Perez M

Abstract Share this page

Abstract The effectiveness of chemiluminescence (ChL) in vitro to measure free radicals generated as a result of metabolic disorganization caused by radiation sickness is evaluated. The results are correlated with those obtained by measuring superoxide dismutase (SOD) activity and lipid peroxide as levels of thiobarbituric acid reacting substances (TBARS). To this aim, livers from irradiated Wistar rats were removed immediately (day 0) after irradiation and also 7 and 14 d later. ChL results, expressed in arbitrary units (AU)/min/mg protein, were analyzed for irradiated samples and controls, for different doses at different times. Increased levels of ChL emission were observed not only on day 0, but also on days 7 and 14. On the other hand, SOD activity showed a decrease on the 7th d, and significantly higher lipid peroxide levels were observed in the assays performed on the 14th d, at all exposure doses. The correlation between temporal changes in the SOD activity, ChL emission, and higher TBARS levels a week later were evident from the data. These results indicate that the ChL technique proved to be useful in combination with other techniques currently used for evaluating radiation oxidative injury. This article was published in Biol Trace Elem Res and referenced in Biochemistry & Analytical Biochemistry

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords