alexa Frequency-dependent response of the vascular endothelium to pulsatile shear stress.

Author(s): Himburg HA, Dowd SE, Friedman MH

Abstract Share this page

Abstract As a result of the complex blood flow patterns that occur in the arterial tree, certain regions of the vessel wall experience fluctuations in shear stress that are dominated by harmonic frequencies higher than the heart rate (11). To assess whether variations in frequency affect endothelial gene expression, the gene expression patterns of cultured porcine aortic endothelium exposed to three sinusoidal waveforms (1, 2, and 3 Hz; amplitude = 15 dyn/cm(2)) and one physiological waveform were compared with the expression profiles elicited by steady flow. At each frequency, including steady flow, three levels of mean shear stress (0, 7.5, and 15 dyn/cm(2)) were used. After 24 h shear exposure, RNA was extracted for microarray analysis against 10,665 Sus scrofa oligonucleotides. A two-way ANOVA identified 232 genes of which their transcription was differentially modulated by frequency, while mean shear significantly affected the expression of approximately 3,000 genes. One-way ANOVAs showed that the number of frequency-dependent genes increased as the mean shear stress was reduced. At 1 Hz, several inflammatory transcripts were repressed relative to steady flow, including VCAM and IL-8, whereas several atheroprotective transcripts were induced. The anti-inflammatory response at 1 Hz was reversed at 2 Hz. The proinflammatory response evoked by the higher frequency was most pronounced under reversing and oscillatory shear. This study suggests that arterial regions subject to both shear reversal and dominant frequencies that exceed the normal heart rate are at greater risk for atherosclerotic lesion development. This article was published in Am J Physiol Heart Circ Physiol and referenced in

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Recommended Journals

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords