alexa From arginine methylation to ADMA: a novel mechanism with therapeutic potential in chronic lung diseases.
Pediatrics

Pediatrics

Journal of Pediatric Neurology and Medicine

Author(s): Zakrzewicz D, Eickelberg O

Abstract Share this page

Abstract Protein arginine methylation is a novel posttranslational modification regulating a diversity of cellular processes, including protein-protein interaction, signal transduction, or histone function. It has recently been shown to be dysregulated in chronic renal, vascular, and pulmonary diseases, and metabolic products originating from protein arginine methylation have been suggested to serve as biomarkers in cardiovascular and pulmonary diseases. Protein arginine methylation is performed by a class of enzymes called protein arginine methyltransferases (PRMT), which specifically methylate protein-incorporated arginine residues to generate protein-incorporated monomethylarginine (MMA), symmetric dimethylarginine (SDMA), or asymmetric dimethylarginine (ADMA). Upon proteolytic cleavage of arginine-methylated proteins, free intracellular MMA, SDMA, or ADMA is generated, which, upon secretion into the extracellular space (including plasma), directly affects the methylarginine concentration in the plasma. Free methylarginines are cleared from the body by renal excretion or hepatic metabolism. In addition, MMA and ADMA, but not SDMA, can be degraded via a class of intracellular enzymes called dimethylarginine dimethylaminohydrolases (DDAH). ADMA and MMA are endogenous inhibitors of nitric oxide synthases (NOS) and ADMA has been suggested to serve as a biomarker of endothelial dysfunction in cardiovascular diseases. This view has now been extended to the idea that, in addition to serum ADMA, the amount of free, as well as protein-incorporated, intracellular ADMA influences pulmonary cell function and determines the development of chronic lung diseases, including pulmonary arterial hypertension (PAH) or pulmonary fibrosis. This review will present and discuss the recent findings of dysregulated arginine methylation in chronic lung disease. We will highlight novel directions for future investigations evaluating the functional contribution of arginine methylation in lung homeostasis and disease with the outlook that modifying PRMT or DDAH activity presents a novel therapeutic option for the treatment of chronic lung disease.
This article was published in BMC Pulm Med and referenced in Journal of Pediatric Neurology and Medicine

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version