alexa Fructose-induced stress signaling in the liver involves methylglyoxal.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Glycomics & Lipidomics

Author(s): Wei Y, Wang D, Moran G, Estrada A, Pagliassotti MJ

Abstract Share this page

Abstract BACKGROUND: Fructose produces hepatic insulin resistance in humans and animals. We have proposed that the selective metabolism of fructose by the liver can, under conditions of elevated fructose delivery, inflict a metabolic insult that is localized to the hepatocyte. The present study was designed to identify potential cellular effectors of this insult. METHODS: Primary hepatocytes were incubated with 8 mM glucose and 0.12\% inulin (G, n = 6) or 8 mM glucose, 0.12\% inulin and 28 mU of inulinase (GF, n = 6) in the presence or absence of insulin for 0, 2, or 4 h. RESULTS: GF produced fructose concentrations of ~0.7 mM over the 4 h experiment. GF induced phosphorylation of MKK7 and JNK, phosphorylation of serine307 on IRS-1, and reduced tyrosine phosphorylation of IRS-1 and -2. GF increased ceramide levels and reactive oxygen species (ROS); however inhibitors of ceramide synthesis or ROS accumulation did not prevent GF-mediated changes in MKK7, JNK or IRS proteins. GF increased cellular methylglyoxal concentrations and a selective increase in methylglyoxal recapitulated the GF-induced changes in MKK7, JNK and IRS proteins. CONCLUSIONS: We hypothesize that GF-mediated changes in stress signaling involve methylglyoxal in primary hepatocytes.
This article was published in Nutr Metab (Lond) and referenced in Journal of Glycomics & Lipidomics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version