alexa FTIR-I compositional mapping of the cartilage-to-bone interface as a function of tissue region and age.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Tissue Science & Engineering

Author(s): Khanarian NT, Boushell MK, Spalazzi JP, Pleshko N, Boskey AL,

Abstract Share this page

Abstract Soft tissue-to-bone transitions, such as the osteochondral interface, are complex junctions that connect multiple tissue types and are critical for musculoskeletal function. The osteochondral interface enables pressurization of articular cartilage, facilitates load transfer between cartilage and bone, and serves as a barrier between these two distinct tissues. Presently, there is a lack of quantitative understanding of the matrix and mineral distribution across this multitissue transition. Moreover, age-related changes at the interface with the onset of skeletal maturity are also not well understood. Therefore, the objective of this study is to characterize the cartilage-to-bone transition as a function of age, using Fourier transform infrared spectroscopic imaging (FTIR-I) analysis to map region-dependent changes in collagen, proteoglycan, and mineral distribution, as well as collagen organization. Both tissue-dependent and age-related changes were observed, underscoring the role of postnatal physiological loading in matrix remodeling. It was observed that the relative collagen content increased continuously from cartilage to bone, whereas proteoglycan peaked within the deep zone of cartilage. With age, collagen content across the interface increased, accompanied by a higher degree of collagen alignment in both the surface and deep zone cartilage. Interestingly, regardless of age, mineral content increased exponentially across the calcified cartilage interface. These observations reveal new insights into both region- and age-dependent changes across the cartilage-to-bone junction and will serve as critical benchmark parameters for current efforts in integrative cartilage repair. © 2014 American Society for Bone and Mineral Research.
This article was published in J Bone Miner Res and referenced in Journal of Tissue Science & Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version