alexa Functional characterization of yeast telomerase RNA dimerization.
Microbiology

Microbiology

Virology & Mycology

Author(s): Gipson CL, Xin ZT, Danzy SC, Parslow TG, Ly H

Abstract Share this page

Abstract Telomerase is the cellular RNA-dependent DNA polymerase (i.e. reverse transcriptase) that uses an integral RNA template to synthesize telomeric DNA repeats at the ends of linear chromosomes. Human telomerase RNA (hTERC) is thought to function as a dimeric complex consisting of two RNAs that interact with each other physically as well as genetically. We show here for the first time that the yeast Saccharomyces cerevisiae telomerase RNA TLC1 likewise forms dimers in vitro. TLC1 dimerization depends on a unique 6-base self-complementary sequence, which closely mimics palindromic sequences that mediate functional dimerization of HIV-1 and other retroviral genomes. We found that dissimilar but comparably located TLC1 palindromes from other sensu stricto yeasts can functionally substitute for that of S. cerevisiae. Yeast cells expressing dimerization-defective TLC1 alleles have shorter telomeres than those with wild-type TLC1. This study, therefore, highlights dimerization as a functionally conserved feature of the RNA templates utilized by reverse transcriptases of both viral and cellular origins. This article was published in J Biol Chem and referenced in Virology & Mycology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords