alexa Functional compartmentation of dCTP pools. Preferential utilization of salvaged deoxycytidine for DNA repair in human lymphoblasts.
Molecular Biology

Molecular Biology

Journal of Cell Science & Therapy

Author(s): Xu YZ, Huang P, Plunkett W

Abstract Share this page

Abstract The utilization of dCTP derived from de novo synthesis through ribonucleotide reductase in exponentially growing CCRF-CEM cells was compared with the metabolic fate of dCTP produced by the salvage pathway. Exogenous dCyd was not effectively incorporated into replicating DNA; instead, dCTP derived from ribonucleotide reductase (labeled by [5-3H]Cyd) was the main precursor for that purpose, apparently because of functional compartmentation of the dCTP pool in these cells. Studies of the metabolic route of incorporation of exogenous [5-3H]dCyd into DNA of growing CCRF-CEM cells demonstrated that it was mainly incorporated through the DNA repair pathway. Incorporation of [5-3H]dCyd into DNA of synchronized cell populations was maximal in G1 cells, whereas [3H]dThd incorporation occurred predominantly in S phase cells. When cellular DNA was density labeled by incubation with BrdUrd, repaired DNA, which was less dense than replicated DNA, was preferentially labeled by [5-3H]dCyd. In contrast, replicated DNA was labeled by both [3H]dThd and [5-3H]Cyd. The DNA-damaging agents methylmethanesulfonate, ultraviolet irradiation, and gamma-irradiation inhibited [3H]dThd incorporation, whereas they stimulated the accumulation of [5-3H]dCyd in DNA. Based on these results, we propose that the dCTP pool is functionally compartmentalized in growing CCRF-CEM cells. dCTP derived from the salvage pathway is utilized predominantly for DNA repair, whereas the de novo pathway supplies dCTP for DNA replication.
This article was published in J Biol Chem and referenced in Journal of Cell Science & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords