alexa Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Stem Cell Research & Therapy

Author(s): SamavarchiTehrani P, Golipour A, David L, Sung HK, Beyer TA,

Abstract Share this page

Abstract Somatic cells can be reprogrammed to induced pluripotent stem cells (iPSCs) by expression of defined embryonic factors. However, little is known of the molecular mechanisms underlying the reprogramming process. Here we explore somatic cell reprogramming by exploiting a secondary mouse embryonic fibroblast model that forms iPSCs with high efficiency upon inducible expression of Oct4, Klf4, c-Myc, and Sox2. Temporal analysis of gene expression revealed that reprogramming is a multistep process that is characterized by initiation, maturation, and stabilization phases. Functional analysis by systematic RNAi screening further uncovered a key role for BMP signaling and the induction of mesenchymal-to-epithelial transition (MET) during the initiation phase. We show that this is linked to BMP-dependent induction of miR-205 and the miR-200 family of microRNAs that are key regulators of MET. These studies thus define a multistep mechanism that incorporates a BMP-miRNA-MET axis during somatic cell reprogramming. PAPERCLIP: Copyright (c) 2010 Elsevier Inc. All rights reserved. This article was published in Cell Stem Cell and referenced in Journal of Stem Cell Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords