alexa Functional properties of myelin oligodendrocyte glycoprotein-reactive T cells in multiple sclerosis patients and controls.
Immunology

Immunology

Immunome Research

Author(s): Van der Aa A, Hellings N, Bernard CC, Raus J, Stinissen P

Abstract Share this page

Autoimmune T-cell reactivity to myelin components may be implicated in the initiation or maintenance of the inflammation leading to myelin destruction in multiple sclerosis (MS). Myelin oligodendrocyte glycoprotein (MOG), a quantitatively minor myelin protein, is an important candidate autoantigen in MS. We studied T-cell responses to recombinant MOG (extracellular domain, rMOG) and a panel of four peptides within this domain (amino acids 1-22, 34-56, 64-86 and 74-96) in MS patients and healthy controls (NS). Frequency analysis of T cells reactive to rMOG as measured by IFN-gamma ELISPOT did not reveal significant differences between MS patients and controls. MOG-reactive T-cell lines and clones (TCL/TCC) were generated by stimulating PBMC of four MS patients and three healthy subjects with a cocktail of the four MOG peptides. The functional properties of 50 MOG peptide-reactive TCL/TCC obtained were studied. All TCL were TCR alpha beta+CD4+ and 20 TCL showed reactivity to MOG peptides 1-22, 13 to 34-56, 1 to 64-86 and 16 to 74-96. No significant differences in peptide recognition were observed between MS patients and controls. The T-cell receptor (TCR) hypervariable regions of MOG-reactive TCL/TCC showed a heterogeneous usage of various TCR V(-D)-J elements. The data provide no evidence for clonal expansions within the MOG-reactive T-cell repertoire of the two study groups. Intracellular cytokine analysis demonstrated predominantly Th1-TCC (IFN-gamma+/IL-4-) in MS patients, while most MOG-reactive TCC of control subjects had a mixed Th0/Th1 phenotype. Furthermore, the MS-derived MOG-reactive TCC produced increased levels of TNF-alpha upon antigen stimulation as compared to controls. Most of the MS-derived MOG-TCC induced specific cytolysis of autologous MOG-pulsed PBMC (9/11) while none of the MOG-TCC isolated from control subjects showed this cytotoxicity (0/8). In conclusion, although the frequency of anti-MOG T cells was similar in MS patients and controls, our data indicate potential differences in the functional properties of MOG TCL in MS patients versus healthy controls which may relate to their role in the disease process.

This article was published in J Neuroimmunol. and referenced in Immunome Research

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords