alexa Functional striatal hypodopaminergic activity in mice lacking adenosine A(2A) receptors.
Psychiatry

Psychiatry

Journal of Addiction Research & Therapy

Author(s): Dassesse D, Massie A, Ferrari R, Ledent C, Parmentier M,

Abstract Share this page

Abstract Adenosine and caffeine modulate locomotor activity and striatal gene expression, partially through the activation and blockade of striatal A(2A) receptors, respectively. The elucidation of the roles of these receptors benefits from the construction of A(2A) receptor-deficient mice (A(2A)-R(-/-)). These mice presented alterations in locomotor behaviour and striatal expression of genes studied so far, which are unexpected regarding the specific expression of A(2A) receptor by striatopallidal neurones. To clarify the functions of A(2A) receptors in the striatum and to identify the mechanisms leading to these unexpected modifications, we studied the basal expression of immediate early and constitutive genes as well as dopamine and glutamate neurotransmission in the striatum. Basal zif268 and arc mRNAs expression was reduced in mutant mice by 60-80\%, not only in the striatum but also widespread in the cerebral cortex and hippocampus. Striatal expression of substance P and enkephalin mRNAs was reduced by about 50\% and 30\%, respectively, whereas the expression of GAD67 and GAD65 mRNAs was slightly increased and unaltered, respectively. In vivo microdialysis in the striatum revealed a 45\% decrease in the extracellular dopamine concentration and three-fold increase in extracellular glutamate concentration. This was associated with an up-regulation of D(1) and D(2) dopamine receptors expression but not with changes in ionotropic glutamate receptors. The levels of tyrosine hydroxylase and of striatal and cortical glial glutamate transporters as well as adenosine A(1) receptors expression were indistinguishable between A(2A)-R(-/-) and wild-type mice. Altogether these results pointed out that the lack of A(2A) receptors leads to a functional hypodopaminergic state and demonstrated that A(2A) receptors are necessary to maintain a basal level in immediate early and constitutive genes expression in the striatum and cerebral cortex, possibly via their control of dopamine pathways.
This article was published in J Neurochem and referenced in Journal of Addiction Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords