alexa Functional tissue and developmental specificities of myofibrils and mitochondria in cardiac muscle.


Journal of Clinical & Experimental Cardiology

Author(s): Vannier C, Veksler V, Mekhfi H, Mateo P, VenturaClapier R

Abstract Share this page

Abstract To understand the factors underlying the functional differences between atrial and ventricular tissues, intrinsic properties of myofibrils and mitochondria of atrial skinned fibers were compared with those of fibers from adult or immature (1 and 2 weeks old) ventricular muscle. Isometric mechanical parameters were determined at various calcium concentrations in fibers treated with Triton X-100 to solubilize all cellular membranes. Maximal active tension and stiffness measured at pCa 4.5, as well as calcium sensitivity, were not different in adult atria and ventricles. Both force and stiffness increased in adult ventricles, while calcium sensitivity diminished in adult ventricles, compared with immature muscles. Myofibrillar contractile kinetics, assessed by the rate constant of tension fall following quick stretches, were similar in adult atria (79.7 +/- 6.9 s-1) and ventricles (72.4 +/- 6.8 s-1) and higher in adult atria and ventricles than in immature ventricles (24.1 +/- 2.3 s-1 in 1-week-old rats and 49.3 +/- 4.2 s-1 in 2-week-old rats). Sensitivity of rigor tension development to MgATP in the presence and in the absence of phosphocreatine was not markedly different in the different tissues. Mitochondrial function was assessed in saponin-skinned fibers. Tissue oxidative capacities, expressed as nmol fiber dry weight, were lower in immature ventricles and atria than in adult ventricles. Creatine failed to stimulate respiration in ventricles of young rats and in adult atria, whereas a 74 +/- 10\% increase in respiration was observed in adult ventricles. Since mitochondrial creatine kinase was present in adult atria, this suggests an absence of coupling between oxidative phosphorylation and mitochondrial creatine kinase in this tissue. Thus, adult atrial tissue differs from neonatal ventricular tissue but it exhibits contractile properties similar to adult ventricular properties and differs from adult ventricle mainly in metabolic properties.
This article was published in Can J Physiol Pharmacol and referenced in Journal of Clinical & Experimental Cardiology

Relevant Expert PPTs

Relevant Speaker PPTs

  • Donald silverberg
    Is correction of iron deficiency a new addition to the treatment of heart failure?
    PPT Version | PDF Version
  • Ahmed Zeidan
    Effects of intravenous iron in chronic kidney disease and heart failure
    PPT Version | PDF Version
  • Yosef Yarden
    Classically, the 3’untranslated region (3’UTR) is that region in eukaryotic protein-coding genes from the translation termination codon to the polyA signal. It is transcribed as an integral part of the mRNA encoded by the gene. However, there exists another kind of RNA, which consists of the 3’UTR alone, without all other elements in mRNA such as 5’UTR and coding region. The importance of independent 3’UTR RNA (referred as I3’UTR) was prompted by results of artificially introducing such RNA species into malignant mammalian cells. Since 1991, we found that the middle part of the 3’UTR of the human nuclear factor for interleukin-6 (NF-IL6) or C/EBP gene exerted tumor suppression effect in vivo. Our subsequent studies showed that transfection of C/EBP 3’UTR led to down-regulation of several genes favorable for malignancy and to up-regulation of some genes favorable for phenotypic reversion. Also, it was shown that the sequences near the termini of the C/EBP 3’UTR were important for its tumor suppression activity. Then, the C/EBP 3’UTR was found to directly inhibit the phosphorylation activity of protein kinase CPKC in SMMC-7721, a hepatocarcinoma cell line. Recently, an AU-rich region in the C/EBP 3’UTR was found also to be responsible for its tumor suppression. Recently we have also found evidence that the independent C/EBP 3’UTR RNA is actually exists in human tissues, such as fetal liver and heart, pregnant uterus, senescent fibroblasts etc. Through 1990’s to 2000’s, world scientists found several 3’UTR RNAs that functioned as artificial independent RNAs in cancer cells and resulted in tumor suppression. Interestingly, majority of genes for these RNAs have promoter-like structures in their 3’UTR regions, although the existence of their transcribed products as independent 3’UTR RNAs is still to be confirmed. Our studies indicate that the independent 3’UTR RNA is a novel non-coding RNA species whose function should be the regulation not of the expression of their original mRNA, but of some essential life activities of the cell as a whole.
    PPT Version | PDF Version
  • Ishfaq A Bukhari
    Protective Effect of Diltiazem and Fenofibrate Against Ischemia-reperfusion Induced Cardiac Arrhythmias in the Isolated Rat Heart.
    PPT Version | PDF Version
  • A Martin Gerdes
    Wrong about β-blockers! Wrong about positive inotropes! Wrong about Thyroid Hormone treatment of Heart Failure?
    PDF Version
  • Fatih Yalcin
    PDF Version
  • Samuel C Dudley
    Novel biomarkers for diastolic heart failure
    PDF Version
  • Abdulaziz U Joury
    Acute Myocardial Infarction as First Presentation among patients with Coronary Heart Disease
    PPT Version | PDF Version
  • Helena Dominguez
    Can we protect the brain against thromboembolism during open heart surgery? LAACS project
    PDF Version
  • Saverio Gentile
    Ion channels phosphorylopathy: 3rd International Conference on Clinical & Experimental Cardiology April 15-17, 2013 A link between genomic variations and heart arrhythmia
    PDF Version

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version