alexa Functionally selective peripheral nerve stimulation with a flat interface nerve electrode.


International Journal of Sensor Networks and Data Communications

Author(s): Tyler DJ, Durand DM

Abstract Share this page

Abstract One of the important goals of peripheral nerve electrode development is to design an electrode for selective recruitment of the different functions of a common nerve trunk. A challenging task is gaining selective access to central axon populations. In this paper, a simple electrode that takes advantage of the neural plasticity to reshape the nerve is presented. The flat interface nerve electrode (FINE) reshapes the nerve into a flat geometry to increase the surface area and move central axon populations close to the surface. The electrode was implanted acutely on the sciatic nerve of eight cats. The FINE can significantly reshape the nerve and fascicles (p < 0.0001) while maintaining the same total nerve cross-sectional area. The stimulation thresholds were 2.89 nC for pulse amplitude modulation and 10.2 nC for pulse-width modulation. Monopolar, square-pulse stimulation with single contacts on the FINE selectively recruited each of the four main branches of the sciatic nerve. Simultaneous stimulation with two contacts produced moments about the ankle joint that were a combination of the moments produced by the individual contacts when stimulated separately. This article was published in IEEE Trans Neural Syst Rehabil Eng and referenced in International Journal of Sensor Networks and Data Communications

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version