alexa Future treatment of chronic hepatitis C with direct acting antivirals: is resistance important?
Microbiology

Microbiology

Journal of Antivirals & Antiretrovirals

Author(s): Halfon P, Sarrazin C

Abstract Share this page

Abstract Recent advances in molecular biology have led to the development of novel small molecules that target specific viral proteins of the hepatitis C virus (HCV) life cycle. These drugs, collectively termed directly acting antivirals (DAA), include a range of non-structural (NS) 3/NS4A protease, NS5B polymerase and NS5A inhibitors at various stages of clinical development. Some others drugs called 'non DAA'or indirect inhibitors are not focused on one site of the life cycle target and are still in early pre-clinical and clinical phase I, II and III trials. The rapid replication rate of HCV, along with the low fidelity of its polymerase, results in a generation of mutations throughout the viral genome and sequence variation in the HCV population known as a quasispecies. The efficacy of DAA is limited by the presence of these mutations, resulting in amino acid substitutions within the targeted proteins which affect viral sensitivity to these compounds. Thus, attributable to the high genetic variability of HCV, variants with reduced susceptibility to DAA can occur naturally even before treatment begins, but usually at low levels. Thus it is not surprising that these changes are selected in patients that either breakthrough or do not respond to potent DAA treatment. Six major position mutations in the NS3 HCV Protease (36, 54, 155, 156, 168 and 170), fifteen in the NS5B polymerase (96, 282, 316, 365, 414, 419, 423, 448, 482, 494, 495, 496, 499, 554, 559) and five in the NS5 A region (28, 30, 31, 58 and 93) have now been reported in vitro or in vivo associated with different levels of resistance. The amino acid composition at several of the drug resistance sites can vary between the HCV genotypes/subtypes, resulting in different consensus amino acids leading to a reduction in replicative fitness as well as reduced DAA and non- DAA sensitivity. Information on patterns of resistance to and cross resistance between antiviral agents is increasingly available and may be important for decisions on how to combine drugs to achieve an optimum antiviral effect. This review debates the clinical relevance of resistance to direct and indirect inhibitors taking into account the future potential therapeutic strategies to help patients who do develop resistance to HCV inhibitors. Finally, this chapter treats two points of view: 'for' and 'against' the question of the importance of resistance. © 2012 John Wiley & Sons A/S. This article was published in Liver Int and referenced in Journal of Antivirals & Antiretrovirals

Relevant Expert PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords