alexa Ganglion cell contributions to the rat full-field electroretinogram
Ophthalmology

Ophthalmology

Journal of Clinical & Experimental Ophthalmology

Author(s): Bui BV, Fortune B

Abstract Share this page

The purpose of this study was to determine what contributions are made to the rat full-field electroretinogram (ERG) by ganglion cells (GCs). To that end, the ERG was assessed longitudinally following optic nerve transection (ONTx). Additional studies were conducted using intravitreal injections of pharmacologically active substances. The ERG was recorded simultaneously from both eyes of anaesthetized adult Brown-Norway rats (ketamine: xylazine: acepromazine, 55: 5: 1 mg kg−1) using custom silver chloride electrodes. Stimuli were brief, white xenon discharges delivered via a Ganzfeld under dark-adapted and light-adapted conditions (150 cd m−2). ERGs were obtained 1, 2, 3, 4 and 9 weeks after ONTx (n= 8) or sham (n= 8) operations. ONTx reduced both positive and negative components of the scotopic threshold response (pSTR and nSTR). Scotopic ERG responses to brighter flashes, including a-waves, b-waves and oscillatory potentials (OPs) were unaffected by ONTx. ONTx reduced the photopic b-wave and OPs. TTX (6 μm) reduced the pSTR and nSTR, but not the scotopic a-wave, b-wave or OPs. TTX had dramatic effects on the photopic ERG, surpassing the effects of ONTx. TTX application 9 weeks post-ONTx had little additional effect on the STR. Inhibition of inner retinal responses using GABA (10 mm) or NMDA (0.8 mm) reduced the nSTR substantially. Similar results were obtained with antagonists of AMPA/KA ionotropic glutamate receptors 6-cyano-7-nitroquinoxaline-2,3(1H,4H)-dione (CNQX, 0.2 mm) or cis-2,3-piperidinedicarboxylic acid (PDA, 5 mm); however, both also reduced the scotopic b-wave by ∼40 %. By contrast, the NMDA receptor antagonist D(-)-2-amino-7-phosphonoheptanoic acid (D-AP7, 0.2 mm) had no effect alone, but the combination of D-AP7 and CNQX completely abolished the STR. The results of this study indicate that: (1) both pSTR and nSTR components in the rat depend directly upon intact GC responses, and that amacrine cell contributions to these components are relatively small; (2) scotopic ERG response components to brighter flashes receive little influence from GCs; (3) the rat photopic ERG also reflects GC signals and may serve as an additional useful test of GC function; (4) TTX had dramatic effects on the rat photopic ERG that were not attributable to GC currents, but rather to voltage-gated sodium currents in amacrine or interplexiform cells; (5) a small residual negative STR persisted after ONTx that was likely to be generated by graded responses of third-order retinal cells, most likely amacrine cells.

This article was published in The Journal of Physiology and referenced in Journal of Clinical & Experimental Ophthalmology

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords