alexa Ganglioside GD1a increases the excitability of voltage-dependent sodium channels.
Neurology

Neurology

International Journal of Neurorehabilitation

Author(s): Salazar BC, Castao S, Snchez JC, Romero M, RecioPinto E

Abstract Share this page

Abstract The effect of the negatively charged ganglioside GD1a, one of the major brain gangliosides [H. Beitinger, W. Probst, R. Hilbig, H. Rahmann, Seasonal variability of sialo-glycoconjugates in the brain of the Djungarian hamster (Phodopus sungorus). Comp. Biochem. Physiol., B 86 (1987) 377-384] on the function of brain derived BTX-modified voltage-dependent sodium channel was studied using the planar lipid bilayer system. Bilayers were formed either with a mixture of neutral phospholipids (4 phosphoethanolamine (PE):1 phosphocholine (PC)) alone or with one containing 6\% of the disialoganglioside GD1a. The permeation and activation properties of the channels were measured in the presence of symmetrical 200 mM NaCl. We found that the single channel conductance was not affected by GD1a, whereas the steady-state activation curve displayed a hyperpolarizing shift in the presence of GD1a. Since the lipid distribution in these membranes is symmetrical, then the GD1a effect on sodium channels may result either from an induction of channel conformational changes or from an asymmetrical interaction between the channel (extracellular vs. intracellular channel aspect) and GD1a. Regardless of the mechanism, the data indicate that differences in ganglioside content in neuronal cells may contribute to the previously observed sodium channel functional variability within (soma, dentritic, axon hillock) and between neuronal cells as well as to excitability changes in those physiological and pathological conditions where changes in the neuronal ganglioside content occur. This article was published in Brain Res and referenced in International Journal of Neurorehabilitation

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omi[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords