alexa Gas exchange theory and the lactic acidosis (anaerobic) threshold.

Journal of Nutrition Research

Author(s): Wasserman K, Beaver WL, Whipp BJ

Abstract Share this page

Abstract The physiological requirements of performing exercise above the anaerobic threshold are considerably more demanding than for lower work rates. Lactic acidosis develops at a metabolic rate that is specific to the individual and the task being performed. Although numerous pyruvate-dependent mechanisms can lead to an elevated blood lactate, the increase in lactate during muscular exercise is accompanied by an increase in lactate/pyruvate ratio (i.e., increased NADH/NAD ratio). This is typically caused by an inadequate O2 supply to the mitochondria. Thus, the anaerobic threshold can be considered to be an important assessment of the ability of the cardiovascular system to supply O2 at a rate adequate to prevent muscle anaerobiosis during exercise testing. In this paper, we demonstrate, with statistical justification, that the pattern of arterial lactate and lactate/pyruvate ratio increase during exercise evidences threshold dynamics rather than the continuous exponential increase proposed by some investigators. The pattern of change in arterial bicarbonate (HCO3-) and pulmonary gas exchange supports this threshold concept. To estimate the anaerobic threshold by gas exchange methods, we measure CO2 output (VCO2) as a continuous function of O2 uptake (VO2) (V-slope analysis) as work rate is increased. The break-point in this plot reflects the obligate buffering of increasing lactic acid production by HCO3-. The anaerobic threshold measured by the V-slope analysis appears to be a sensitive index of the development of metabolic acidosis even in subjects in whom other gas exchange indexes are insensitive, owing to irregular breathing, reduced chemoreceptor sensitivity, impaired respiratory mechanics, or all of these occurrences.
This article was published in Circulation and referenced in Journal of Nutrition Research

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords