alexa Gaussian docking functions.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Proteomics & Bioinformatics

Author(s): McGann MR, Almond HR, Nicholls A, Grant JA, Brown FK

Abstract Share this page

Abstract A shape-based Gaussian docking function is constructed which uses Gaussian functions to represent the shapes of individual atoms. A set of 20 trypsin ligand-protein complexes are drawn from the Protein Data Bank (PDB), the ligands are separated from the proteins, and then are docked back into the active sites using numerical optimization of this function. It is found that by employing this docking function, quasi-Newton optimization is capable of moving ligands great distances [on average 7 A root mean square distance (RMSD)] to locate the correctly docked structure. It is also found that a ligand drawn from one PDB file can be docked into a trypsin structure drawn from any of the trypsin PDB files. This implies that this scoring function is not limited to more accurate x-ray structures, as is the case for many of the conventional docking methods, but could be extended to homology models. Copyright 2002 Wiley Periodicals, Inc. Biopolymers 68: 76-90, 2003 This article was published in Biopolymers and referenced in Journal of Proteomics & Bioinformatics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 9th International Conference on Bioinformatics
    October 23-24, 2017 Paris, France
  • 9th International Conference and Expo on Proteomics
    October 23-25, 2017 Paris, France

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version