alexa GAUSS-LORENTZ SIZE-STRAIN BROADENING AND CELL PARAMETERS ANALYSIS OF Mn DOPED SnO 2 PREPARED BY ORGANIC ROUTE
Chemical Engineering

Chemical Engineering

Journal of Chromatography & Separation Techniques

Author(s): C O PaivaSantos, H Gouveia, W C Las, J A Varela

Abstract Share this page

SnO 2 samples doped with x-mol% Mn (x = 0, 0.3, 0.5, 0.7, 1.0) were prepared by organic route, calcined at 800 ° C for 4h, and characterized by the Rietveld method with X-ray diffraction data. The Thompson-Cox-Hastings pseudo-Voigt profile function was used as it is in the DBWS 9411 Rietveld analysis software. For the FWHM, were refined only the Gauss and Lorentz coefficients that can be related to size and strain, while the others were kept fixed in the values reached for a WC standard. The Gauss- strain, Lorentz-size and Lorentz-strain broadening coeffi - cients present an almost uniform variation in respect to the Mn inclusion while the Gauss-size coefficient vary disor - derly. The crystallite size determined with these coeffi- cients varies uniformly for Lorentz broadening and highly non-uniform for Gauss broadening. The strain determined with the Lorentz coefficient is approximately 5 times smaller than when determined with Gauss coefficient.. The Lorentz and Gauss contributions for crystallite size (also for strain) were weighted in the FWHM formulae of the TCHZ pseudo-Voigt profile function, and used in the eval- uation of the mean crystallite size. The crystallite size and strain so determined showed a uniform decrease in the crystallite size and increase in the microstrain with the ad- dition of dopants. It was also observed that the unit cell vol - ume decreases slightly as the amount of added dopant increases. For undoped sample the cell parameters are a = 4.73785(5) Å and c = 3.18667(4) Å and for 1mol% Mn doped SnO 2 the cell parameters are a = 4.73577(7) Å and c = 3.18481(6) Å. Based on the cell parameters’ variation it is suggested that the Mn dopant occupies the same crystal - lographic site as Sn, in the SnO 2 crystal structure. Con - sidering that the crystallite size decreases with increasing Mn content, this could explain Mn segregation on the grain boundary of sintered samples and the increase in conduc - tivity observed elsewhere.

  • To read the full article Visit
  • Open Access
This article was published in Materials Structure and referenced in Journal of Chromatography & Separation Techniques

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords