alexa G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4.
Medicine

Medicine

Advanced Techniques in Biology & Medicine

Author(s): Petit I, SzyperKravitz M, Nagler A, Lahav M, Peled A, , Petit I, SzyperKravitz M, Nagler A, Lahav M, Peled A,

Abstract Share this page

Abstract Granulocyte colony-stimulating factor (G-CSF) induced hematopoietic stem cell mobilization is widely used for clinical transplantation; however, the mechanism is poorly understood. We report here that G-CSF induced a reduction of the chemokine stromal cell derived factor 1 (SDF-1) and an increase in its receptor CXCR4 in the bone marrow (BM), whereas their protein expression in the blood was less affected. The gradual decrease of BM SDF-1, due mostly to its degradation by neutrophil elastase, correlated with stem cell mobilization. Elastase inhibition reduced both activities. Human and murine stem cell mobilization was inhibited by neutralizing CXCR4 or SDF-1 antibodies, demonstrating SDF-1 CXCR4 signaling in cell egress. We suggest that manipulation of SDF-1 CXCR4 interactions may be a means with which to control the navigation of progenitors between the BM and blood to improve the outcome of clinical stem cell transplantation. This article was published in Nat Immunol and referenced in Advanced Techniques in Biology & Medicine

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords