alexa Gelatinization temperature of rice explained by polymorphisms in starch synthase.
Agri and Aquaculture

Agri and Aquaculture

Advances in Crop Science and Technology

Author(s): Waters DL, Henry RJ, Reinke RF, Fitzgerald MA

Abstract Share this page

Abstract The cooking quality of rice is associated with the starch gelatinization temperature (GT). Rice genotypes with low GT have probably been selected for their cooking quality by humans during domestication. We now report polymorphisms in starch synthase IIa (SSIIa) that explain the variation in rice starch GT. Sequence analysis of the eight exons of SSIIa identified significant polymorphism in only exon 8. These single nucleotide polymorphisms (SNPs) were determined in 70 diverse genotypes of rice. Two SNPs could classify all 70 genotypes into either high GT or low GT types which differed in GT by 8 degrees C. 'A' rather than 'G' at base 2412 determined whether a methionine or valine was present at the corresponding amino acid residue in SSIIa, whilst two adjacent SNPs at bases 2543 and 2544 coded for either leucine (GC) or phenylalanine (TT). Rice varieties with high GT starch had a combination of valine and leucine at these residues. In contrast, rice varieties with low GT starch had a combination of either methionine and leucine or valine and phenylalanine at these same residues. At least two distinct polymorphisms have apparently been selected for their desirable cooking qualities in the domestication of rice. This article was published in Plant Biotechnol J and referenced in Advances in Crop Science and Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version