alexa Geldanamycin abrogates ErbB2 association with proteasome-resistant beta-catenin in melanoma cells, increases beta-catenin-E-cadherin association, and decreases beta-catenin-sensitive transcription.


Journal of Pigmentary Disorders

Author(s): Bonvini P, An WG, Rosolen A, Nguyen P, Trepel J,

Abstract Share this page

Abstract Beta-catenin undergoes both serine and tyrosine phosphorylation. Serine phosphorylation in the amino terminus targets beta-catenin for proteasome degradation, whereas tyrosine phosphorylation in the COOH terminus influences interaction with E-cadherin. We examined the tyrosine phosphorylation status of beta-catenin in melanoma cells expressing proteasome-resistant beta-catenin, as well as the effects that perturbation of beta-catenin tyrosine phosphorylation had on its association with E-cadherin and on its transcriptional activity. Beta-catenin is tyrosine phosphorylated in three melanoma cell lines and associates with both the ErbB2 receptor tyrosine kinase and the LAR receptor tyrosine phosphatase. Geldanamycin, a drug which destabilizes ErbB2, caused rapid cellular depletion of the kinase and loss of its association with beta-catenin without perturbing either LAR or beta-catenin levels or LAR/beta-catenin association. Geldanamycin also stimulated tyrosine dephosphorylation of beta-catenin and increased beta-catenin/E-cadherin association, resulting in substantially decreased cell motility. Geldanamycin also decreased the nuclear beta-catenin level and inhibited beta-catenin-driven transcription, as assessed using two different beta-catenin-sensitive reporters and the endogenous cyclin D1 gene. These findings were confirmed by transient transfection of two beta-catenin point mutants, Tyr-654Phe and Tyr-654Glu, which, respectively, mimic the dephosphorylated and phosphorylated states of Tyr-654, a tyrosine residue contained within the beta-catenin-ErbB2-binding domain. These data demonstrate that the functional activity of proteasome-resistant beta-catenin is regulated further by geldanamycin-sensitive tyrosine phosphorylation in melanoma cells.
This article was published in Cancer Res and referenced in Journal of Pigmentary Disorders

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version