alexa Gene expression in salivary glands: effects of diet and mouse chromosome 17 locus regulating macronutrient intake.
Cardiology

Cardiology

Journal of Clinical & Experimental Cardiology

Author(s): Simon J, DiCarlo LM, Kruger C, Johnson WD, Kappen C,

Abstract Share this page

Abstract Dcpp2, Prrt1, and Has1 are plausible candidate genes for the Mnic1 (macronutrient intake-carbohydrate) locus on mouse chromosome 17, based on their map positions and sequence variants, documented expression in salivary glands, and the important role of saliva in oral food processing and taste. We investigated the effects of genotype and diet on gene expression in salivary glands (parotid, submandibular, sublingual) of carbohydrate-preferring, C57BL6J.CAST/EiJ-17.1 subcongenic mice compared to fat-preferring wild-type C57BL/6J. To achieve accurate normalization of real-time quantitative RT-PCR data, we evaluated multiple reference genes to identify the most stably expressed control genes in salivary gland tissues, and then used geometric averaging to produce a reliable normalization factor. Gene expression was measured in mice fed different diets: (1) rodent chow, (2) macronutrient selection diets, (3) high-fat diet, and (4) low-fat diet. In addition, we measured salivary hyaluronan concentrations. All three genes showed strain differences in expression, in at least one major salivary gland, and diet effects were observed in two glands. Dcpp2 expression was limited primarily to sublingual gland, and strongly decreased in B6.CAST-17.1 subcongenic mice compared to wild-type B6, regardless of diet. In contrast, both genotype and diet affected Prrt1 and Has1 expression, in a gland-specific manner, for example, Prrt1 expression in the parotid gland alone was strongly reduced in both mouse strains when fed macronutrient selection diet compared to chow. Notably, we discovered an association between diet composition and salivary hyaluronan content. These results demonstrate robust effects of genetic background and diet composition on candidate gene expression in mouse salivary glands. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
This article was published in Physiol Rep and referenced in Journal of Clinical & Experimental Cardiology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords