alexa Gene regulatory network growth by duplication.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Computer Science & Systems Biology

Author(s): Teichmann SA, Babu MM

Abstract Share this page

Abstract We are beginning to elucidate transcriptional regulatory networks on a large scale and to understand some of the structural principles of these networks, but the evolutionary mechanisms that form these networks are still mostly unknown. Here we investigate the role of gene duplication in network evolution. Gene duplication is the driving force for creating new genes in genomes: at least 50\% of prokaryotic genes and over 90\% of eukaryotic genes are products of gene duplication. The transcriptional interactions in regulatory networks consist of multiple components, and duplication processes that generate new interactions would need to be more complex. We define possible duplication scenarios and show that they formed the regulatory networks of the prokaryote Escherichia coli and the eukaryote Saccharomyces cerevisiae. Gene duplication has had a key role in network evolution: more than one-third of known regulatory interactions were inherited from the ancestral transcription factor or target gene after duplication, and roughly one-half of the interactions were gained during divergence after duplication. In addition, we conclude that evolution has been incremental, rather than making entire regulatory circuits or motifs by duplication with inheritance of interactions. This article was published in Nat Genet and referenced in Journal of Computer Science & Systems Biology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords