alexa Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection.
Psychiatry

Psychiatry

Journal of Addiction Research & Therapy

Author(s): Miller DG, Adam MA, Miller AD

Abstract Share this page

Abstract Previous reports have shown that retrovirus infection is inhibited in nonreplicating (stationary-phase [hereafter called stationary]) cells. Infection of stationary cells was shown to occur when the cells were allowed to replicate at times up to a week after infection, suggesting that an unintegrated retrovirus could persist in a form that was competent to integrate after release of the block to replication. However, those studies were complicated by the use of replication-competent virus, which can spread in the infected cells. We have used a replication-defective retrovirus vector to compare the efficiency of gene transfer in stationary and replicating rat embryo fibroblasts. In agreement with previous results, gene transfer was inhibited 100-fold in stationary versus replicating cells. In contrast to previously reported results, the block to infection could not be relieved by stimulating stationary cells to divide at times from 6 h to 10 days after infection. Thus, for successful retroviral infection, the infected cells must be replicating at the time of infection. These results have important implications for the use of retroviral vectors for gene transfer.
This article was published in Mol Cell Biol and referenced in Journal of Addiction Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords