alexa General solution for diffusion-controlled dissolution of spherical particles. 2. Evaluation of experimental data.
Chemical Engineering

Chemical Engineering

Journal of Thermodynamics & Catalysis

Author(s): Wang J, Flanagan DR

Abstract Share this page

Abstract Our general particle dissolution model unified three traditional particle dissolution models and predicted that dissolution rates depend on surface curvature. Spherical benzocaine particles were prepared with a hot-melt dispersion method and physicochemically characterized. Their dissolution behavior was studied to evaluate the general dissolution model. A flow-through dissolution test system was used which employed an HPLC pump, an HPLC UV detector, a cylindrical-shaped dissolution cell, and a data collection system. Single benzocaine particle dissolution profiles were determined at ambient temperature (22-23 degrees C) in water at a constant flow rate. Dissolution rate normalized by surface area was found to be particle radius-dependent and fitted well by the general particle dissolution model with a diffusion layer thickness of 110 microm and benzocaine diffusion coefficient of 1.4 x 10(-5) cm(2)/s. Analysis of literature particle dissolution data also supported this general model. Our general model accounts for literature reports of apparent diffusion layer thicknesses being smaller for small particles compared with large particles. This study supports the applicability of the general particle dissolution model for a flow-through dissolution test system. Copyright 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 91:534-542, 2002
This article was published in J Pharm Sci and referenced in Journal of Thermodynamics & Catalysis

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version