alexa Generation and recycling of radicals from phenolic antioxidants.
Infectious Diseases

Infectious Diseases

Journal of AIDS & Clinical Research

Author(s): Kagan VE, Serbinova EA, Packer L, Kagan VE, Serbinova EA, Packer L

Abstract Share this page

Abstract Hindered phenols are widely used food preservatives. Their pharmacological properties are usually attributed to high antioxidant activity due to efficient scavenging of free radicals. Butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA) also cause tissue damage. Their toxic effects could be due to the production of phenoxyl radicals. If phenoxyl radicals can be recycled by reductants or electron transport, their potentially harmful side reactions would be minimized. A simple and convenient method to follow phenoxyl radical reactions in liposomes and rat liver microsomes based on an enzymatic (lipoxygenase + linolenic acid) oxidation system was used to generate phenoxyl radicals from BHT and its homologues with substitutents in m- and p-positions. Different BHT-homologues display characteristic ESR signals of their radical species. In a few instances the absence of phenoxyl radical ESR signals was found to be due to inhibition of lipoxygenase by BHT-homologues. In liposome or microsome suspensions addition of ascorbyl palmitate resulted in disappearance of the ESR signal of phenoxyl radicals with concomittant appearance of the ascorbyl radical signal. After exhaustion of ascorbate, the phenoxyl radical signal reappears. Comparison of the rates of ascorbyl radical decay in the presence or absence of BHT-homologues showed that temporary elimination of the phenoxyl radical ESR signal was due to their reduction by ascorbate. Similarly, NADPH or NADH caused temporary elimination of ESR signals as a result of reduction of phenoxyl radicals in microsomes. Since ascorbate and NADPH might generate superoxide in the incubation system used, SOD was tested. SOD shortened the period, during which the phenoxyl radicals ESR signal could not be observed. Both ascorbyl palmitate and NADPH exerted sparing effects on the loss of BHT-homologues during oxidation. These effects were partly diminished by SOD. These data indicate that reduction of phenoxyl radicals was partly superoxide-dependent. It is concluded that redox recycling of phenoxyl radicals can occur by intracellular reductants like ascorbate and microsomal electron transport.
This article was published in Arch Biochem Biophys and referenced in Journal of AIDS & Clinical Research

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 5th International Conference on HIV/AIDS, STDs and STIs
    November 13-14, 2017 Las Vegas, Nevada, USA
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords