alexa Genetic and cellular toxicology of dental resin monomers.
Psychiatry

Psychiatry

Journal of Addiction Research & Therapy

Author(s): Schweikl H, Spagnuolo G, Schmalz G

Abstract Share this page

Abstract Monomers are released from dental resin materials, and thus cause adverse biological effects in mammalian cells. Cytotoxicity and genotoxicity of some of these methacrylates have been identified in a vast number of investigations during the last decade. It has been well-established that the co-monomer triethylene glycol dimethacrylate (TEGDMA) causes gene mutations in vitro. The formation of micronuclei is indicative of chromosomal damage and the induction of DNA strand breaks detected with monomers like TEGDMA and 2-hydroxyethyl methacrylate (HEMA). As a consequence of DNA damage, the mammalian cell cycle was delayed in both G1 and G2/M phases, depending on the concentrations of the monomers. Yet, the mechanisms underlying the genetic and cellular toxicology of resin monomers have remained obscure until recently. New findings indicate that increased oxidative stress results in an impairment of the cellular pro- and anti-oxidant redox balance caused by monomers. It has been demonstrated that monomers reduced the levels of the natural radical scavenger glutathione (GSH), which protects cell structures from damage caused by reactive oxygen species (ROS). Depletion of the intracellular GSH pool may then significantly contribute to cytotoxicity, because a related increase in ROS levels can activate pathways leading to apoptosis. Complementary, cytotoxic, and genotoxic effects of TEGDMA and HEMA are inhibited in the presence of ROS scavengers like N-acetylcysteine (NAC), ascorbate, and Trolox (vitamin E). Elevated intracellular levels of ROS can also activate a complex network of redox-responsive macromolecules, including redox-sensitive transcription factors like nuclear factor kappaB (NF-kappaB). It has been shown that NF-kappaB is activated probably to counteract HEMA-induced apoptosis. The induction of apoptosis by TEGDMA in human pulp cells has been associated with an inhibition of the phosphatidylinositol 3-kinase (PI3-K) cell-survival signaling pathway. Although the details of the mechanisms leading to cell death, genotoxicity, and cell-cycle delay are not completely understood, resin monomers may be able to alter the functions of the cells of the oral cavity. Pathways regulating cellular homeostasis, dentinogenesis, or tissue repair may be modified by monomers at concentrations well below those which cause acute cytotoxicity.
This article was published in J Dent Res and referenced in Journal of Addiction Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords