alexa Genetic causes of heterosis in juvenile aspen:a quantitative comparison across intra- and inter-specific hybrids.
Mathematics

Mathematics

Journal of Biometrics & Biostatistics

Author(s): Li B, Wu R

Abstract Share this page

Abstract The genetic causes of heterosis in tree growth were investigated by a comparative genetic analysis of intra- and inter-specific crosses derived from Populus tremuloides and P. tremula. A new analytical method was developed to estimate the effective number of loci affecting a quantitative trait and the magnitudes of their additive and dominant effects across loci. The method combines the assumption of multiple alleles, as frequently found in outcrossing species, and the family structure analysis at different hierarchical levels. During the first 3 years of growth, interspecific hybrids displayed strong heterosis in stem growth, especially volume index, over intraspecific hybrids. By a series of joint analyses on the combining ability and the genetic component, we found that F1 heterosis might be due to overdominant interaction between two alleles, one from the P. tremuloides parent and the other from the P. tremula parent, at the same loci. This inference was derived from the finding that heterozygotes, newly formed through species combination, showed much greater growth than the heterozygotes from intraspecifc crosses at a reference locus. Heterosis in aspen growth appeared to be under multi-genic control, with a slightly larger number of loci for stem diameter and volume (9-10) than for height (6-8). For traits with non-significant heterosis, such as stem allometry and internode number and length, the number of underlying loci seemed to be much fewer (3-4). While additive effects appeared to influence seedling traits collectively across loci, a few major dominant loci had much larger effects on stem growth. This article was published in Theor Appl Genet and referenced in Journal of Biometrics & Biostatistics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbi[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords