alexa Genetic changes associated with glycopeptide resistance in Staphylococcus aureus: predominance of amino acid substitutions in YvqF VraSR.


Clinical Microbiology: Open Access

Author(s): Kato Y, Suzuki T, Ida T, Maebashi K

Abstract Share this page

Abstract OBJECTIVES: To further understand the mechanism of intermediate-level glycopeptide resistance, resulting from multiple endogenous mutations, in both laboratory-derived and clinically isolated Staphylococcus aureus. METHODS: Laboratory-derived S. aureus strains were generated under selection using a variety of cell-wall-active antibiotics. Complete sequences of 27 genes, including 17 two-component histidine kinase sensors, were then compared with those of their susceptible parent strain. Further genetic analysis was performed on 125 clinical S. aureus isolates and 42 geographically diverse isolates of vancomycin-intermediate S. aureus (VISA). RESULTS: Selective pressure using imipenem resulted in single point mutations leading to amino acid substitutions in two genes: vraS, encoding a two-component histidine kinase sensor; and SA1702 (also called yvqF, located immediately upstream of vraS), encoding a conserved hypothetical protein. The accumulation of the mutation in two distinct proteins-MsrR, a peptide methionine sulphoxide reductase regulator, and TcaA, a teicoplanin-resistance-associated protein-correlated with further increases in the glycopeptide MIC. The prevalence of YvqF/VraSR mutants among 125 clinical isolates along with the corresponding teicoplanin MICs was as follows: 0\% (0/39), < or =1 mg/L; 48.6\% (17/35), 2 mg/L; 72.7\% (24/33), 4 mg/L; 93.8\% (15/16), 8 mg/L; and 100\% (2/2), 16 mg/L. Genetic analysis of 42 VISA isolates also identified the predominant amino acid substitutions in YvqF/VraS: 9 isolates (21.4\%) revealed mutations in YvqF, followed by 7 isolates with mutations in VraS (16.7\%). CONCLUSIONS: Our findings provide novel insights into the high prevalence and genetic diversity of YvqF/VraSR mutants among clinical S. aureus isolates with reduced susceptibility to teicoplanin.
This article was published in J Antimicrob Chemother and referenced in Clinical Microbiology: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version