alexa Genetic downregulation of AMPK-alpha isoforms uncovers the mechanism by which metformin decreases FA uptake and oxidation in skeletal muscle cells.
Microbiology

Microbiology

Journal of Antivirals & Antiretrovirals

Author(s): Bogachus LD, Turcotte LP

Abstract Share this page

Abstract Metformin is known to improve insulin sensitivity in part via a rise in AMP-activated protein kinase (AMPK) activity and alterations in muscle metabolism. However, a full understanding of how metformin alters AMPK-α(1) vs. AMPK-α(2) activation remains unknown. To study this question, L6 skeletal muscle cells were treated with or without RNAi oligonucleotide sequences to downregulate AMPK-α(1) or AMPK-α(2) protein expression and incubated with or without 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) or metformin and/or insulin. In contrast to AICAR, which preferentially activated AMPK-α(2), metformin preferentially activated AMPK-α(1) in a dose- and time-dependent manner. Metformin increased (P < 0.05) glucose uptake and plasma membrane (PM) Glut4 in a dose- and time-dependent manner. Metformin significantly reduced palmitate uptake (P < 0.05) and oxidation (P < 0.05), and this was accompanied by a similar decrease (P < 0.05) in PM CD36 content but with no change in acetyl-CoA carboxylase (ACC) phosphorylation (P > 0.05). AICAR and metformin similarly increased (P < 0.05) nuclear silent mating-type information regulator 2 homolog 1 (SIRT1) activity. Downregulation of AMPK-α(1) completely prevented the metformin-induced reduction in palmitate uptake and oxidation but only partially reduced the metformin-induced increase in glucose uptake. Downregulation of AMPK-α(2) had no effect on metformin-induced glucose uptake, palmitate uptake, and oxidation. The increase in SIRT1 activity induced by metformin was not affected by downregulation of either AMPK-α(1) or AMPK-α(2). Our data indicate that, in muscle cells, the inhibitory effects of metformin on fatty acid metabolism occur via preferential phosphorylation of AMPK-α(1), and the data indicate that cross talk between AMPK and SIRT1 does not favor either AMPK isozyme. This article was published in Am J Physiol Cell Physiol and referenced in Journal of Antivirals & Antiretrovirals

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords