alexa Genetic effects on toxic and essential elements in humans: arsenic, cadmium, copper, lead, mercury, selenium, and zinc in erythrocytes.
Reproductive Medicine

Reproductive Medicine

Journal of Fertilization: In Vitro - IVF-Worldwide, Reproductive Medicine, Genetics & Stem Cell Biology

Author(s): Whitfield JB, Dy V, McQuilty R, Zhu G, Heath AC,

Abstract Share this page

Abstract BACKGROUND AND OBJECTIVES: An excess of toxic trace elements or a deficiency of essential ones has been implicated in many common diseases or public health problems, but little is known about causes of variation between people living within similar environments. We estimated effects of personal and socioeconomic characteristics on concentrations of arsenic (As), cadmium (Cd), copper (Cu), mercury (Hg), lead (Pb), selenium (Se), and zinc (Zn) in erythrocytes and tested for genetic effects using data from twin pairs. METHODS: We used blood samples from 2,926 adult twins living in Australia (1,925 women and 1,001 men; 30-92 years of age) and determined element concentrations in erythrocytes by inductively coupled plasma-mass spectrometry. We assessed associations between element concentrations and personal and socioeconomic characteristics, as well as the sources of genetic and environmental variation and covariation in element concentrations. We evaluated the chromosomal locations of genes affecting these characteristics by linkage analysis in 501 dizygotic twin pairs. RESULTS: Concentrations of Cu, Se, and Zn, and of As and Hg showed substantial correlations, concentrations of As and Hg due mainly to common genetic effects. Genetic linkage analysis showed significant linkage for Pb [chromosome 3, near SLC4A7 (solute carrier family 4, sodium bicarbonate cotransporter, member 7)] and suggestive linkage for Cd (chromosomes 2, 18, 20, and X), Hg (chromosome 5), Se (chromosomes 4 and 8), and Zn {chromosome 2, near SLC11A1 [solute carrier family 11 (proton-coupled divalent metal ion transporters)]}. CONCLUSIONS: Although environmental exposure is a precondition for accumulation of toxic elements, individual characteristics and genetic factors are also important. Identification of the contributory genetic polymorphisms will improve our understanding of trace and toxic element uptake and distribution mechanisms.
This article was published in Environ Health Perspect and referenced in Journal of Fertilization: In Vitro - IVF-Worldwide, Reproductive Medicine, Genetics & Stem Cell Biology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords