alexa Genetic, structural and biochemical basis of carbamoyl phosphate synthetase 1 deficiency.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Proteomics & Bioinformatics

Author(s): Martnez AI, PrezArellano I, Pekkala S, Barcelona B, Cervera J

Abstract Share this page

Abstract Carbamoyl phosphate synthetase 1 (CPS1) plays a paramount role in liver ureagenesis since it catalyzes the first and rate-limiting step of the urea cycle, the major pathway for nitrogen disposal in humans. CPS1 deficiency (CPS1D) is an autosomal recessive inborn error which leads to hyperammonemia due to mutations in the CPS1 gene, or is caused secondarily by lack of its allosteric activator NAG. Proteolytic, immunological and structural data indicate that human CPS1 resembles Escherichia coli CPS in structure, and a 3D model of CPS1 has been presented for elucidating the pathogenic role of missense mutations. Recent availability of CPS1 expression systems also can provide valuable tools for structure-function analysis and pathogenicity-testing of mutations in CPS1. In this paper, we provide a comprehensive compilation of clinical CPS1 mutations, and discuss how structural knowledge of CPS enzymes in combination with in vitro analyses can be a useful tool for diagnosis of CPS1D. Copyright © 2010 Elsevier Inc. All rights reserved. This article was published in Mol Genet Metab and referenced in Journal of Proteomics & Bioinformatics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 9th International Conference on Bioinformatics
    October 23-24, 2017 Paris, France
  • 9th International Conference and Expo on Proteomics
    October 23-25, 2017 Paris, France

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version