alexa Genome-wide hypomethylation in human glioblastomas associated with specific copy number alteration, methylenetetrahydrofolate reductase allele status, and increased proliferation.
Diabetes & Endocrinology

Diabetes & Endocrinology

Journal of Steroids & Hormonal Science

Author(s): Cadieux B, Ching TT, VandenBerg SR, Costello JF

Abstract Share this page

Abstract Genome-wide reduction in 5-methylcytosine is an epigenetic hallmark of human tumorigenesis. Experimentally induced hypomethylation in mice promotes genomic instability and is sufficient to initiate tumorigenesis. Here, we report that global hypomethylation is common in primary human glioblastomas [glioblastoma multiforme (GBM)] and can affect up to an estimated 10 million CpG dinucleotides per haploid tumor genome. Demethylation involves satellite 2 (Sat2) pericentromeric DNA at chromosomes 1 and 16, the subtelomeric repeat sequence D4Z4 at chromosomes 4q and 10q, and interspersed Alu elements. Severe hypomethylation of Sat2 sequences is associated with copy number alterations of the adjacent euchromatin, suggesting that hypomethylation may be one factor predisposing to specific genetic alterations commonly occurring in GBMs. An additional apparent consequence of global hypomethylation is reactivation of the cancer-testis antigen MAGEA1 via promoter demethylation, but only in GBMs and GBM cell lines exhibiting a 5-methylcytosine content below a threshold of approximately 50\%. Primary GBMs with significant hypomethylation tended to be heterozygous or homozygous for the low-functioning Val allele of the rate-limiting methyl group metabolism gene methylenetetrahydrofolate reductase (MTHFR), or had a deletion encompassing this gene at 1p36. Tumors with severe genomic hypomethylation also had an elevated proliferation index and deletion of the MTHFR gene. These data suggest a model whereby either excessive cell proliferation in the context of inadequate methyl donor production from MTHFR deficiency promotes genomic hypomethylation and further genomic instability, or that MTHFR deficiency-associated demethylation leads to increased proliferative activity in GBM. This article was published in Cancer Res and referenced in Journal of Steroids & Hormonal Science

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords