alexa Genomic organization of a human 5beta-reductase and its pseudogene and substrate selectivity of the expressed enzyme.
Engineering

Engineering

Journal of Architectural Engineering Technology

Author(s): Charbonneau A, The VL

Abstract Share this page

Abstract The enzyme 5beta-reductase catalyzes the reduction of the 4-ene of 3-ketosteroids, converting them into 5beta-dihydro-3-ketosteroids and, thus, could be involved in the metabolism of 4-cholestene-3-one, progesterone, 17~-hydroxyprogesterone, aldosterone, corticosterone, cortisol, 4-androstenedione, and testosterone. In this study, we report the genomic structure of a human 5beta-reductase gene, its tissue distribution, the characterization of an intronless pseudogene and the substrate selectivity of the enzyme. The gene coding for the active 5beta-reductase contains nine exons like most members of the aldo-keto reductase family, but the sequence covered by the gene, more than 42 kb, is much longer than the sequence of other members of this family. There are many large introns, especially introns 3, 4 and 7 that span approx. 7 kb, and intron 1 that contains more than 10 kb. Northern blot analysis showed three band sizes of 1.3, 2.2 and 2.7 kb. The 1.3 and 2.7 kb bands are highly expressed in the liver while weaker 2.2 and 1.3 kb bands have been observed in the testis and colon, respectively. We also identified an intronless gene having 86\% homology with the 5beta-reductase cDNA sequence. Since its sequence contains many stop codons, this gene is most probably a pseudogene. To determine more precisely the substrate selectivity of the enzyme, we established a stable cell line expressing human 5beta-reductase in transformed embryonic kidney (HEK-293) cells. The transfected cells efficiently catalyze the transformation of progesterone, androstenedione, 17alpha-hydroxyprogesterone and testosterone. However, they catalyze much less efficiently the transformation of compounds containing an 11beta-hydroxy group, such as aldosterone, corticosterone and cortisol. In addition to its role in cholesterol catabolism, it is well recognized that 5beta-reductase inactivates active androgens. Indeed, 5beta-dihydrotestosterone (5beta-DHT), the product of the reduction of testosterone by 5beta-reductase, is not active while its 5~-isomer (DHT) is the most potent natural androgen. Recent findings show that 5beta-pregnanes are active ligands in the induction of CYP3A through the orphan receptor hPAR. Our results thus open an opportunity for studying the new role of 5beta-reductase in the formation of a new type of active steroids.
This article was published in Biochim Biophys Acta and referenced in Journal of Architectural Engineering Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version