alexa Ghrelin inhibits the proliferative activity of immature Leydig cells in vivo and regulates stem cell factor messenger ribonucleic acid expression in rat testis.
Diabetes & Endocrinology

Diabetes & Endocrinology

Journal of Diabetes & Metabolism

Author(s): Barreiro ML, Gaytan F, Castellano JM, Suominen JS, Roa J,

Abstract Share this page

Abstract Ghrelin has emerged as putative regulator of an array of endocrine and nonendocrine functions, including cell proliferation. Recently, we provided evidence for the expression of ghrelin in mature, but not in undifferentiated, Leydig cells of rat and human testis. Yet testicular actions of ghrelin, other than modulation of testosterone secretion, remain unexplored. In the present study we evaluated the effects of ghrelin on proliferation of Leydig cell precursors during puberty and after selective elimination of mature Leydig cells by treatment with ethylene dimethane sulfonate. In these settings, intratesticular injection of ghrelin significantly decreased the proliferative activity of differentiating immature Leydig cells, estimated by 5-bromodeoxyuridine labeling. This response was selective and associated, in ethylene dimethane sulfonate-treated animals, with a decrease in the mRNA levels of stem cell factor (SCF), i.e. a key signal in spermatogenesis and a putative regulator of Leydig cell development. Thus, the effects of ghrelin on SCF gene expression were evaluated. In adult rats, ghrelin induced a significant decrease in SCF mRNA levels in vivo. Such an inhibitory action was also detected in vitro using cultures of staged seminiferous tubules. The inhibitory effect of ghrelin in vivo was dependent on proper FSH input, because it was detected in hypophysectomized rats only after FSH replacement. Overall, it is proposed that acquisition of ghrelin expression by Leydig cell precursors during differentiation may operate as a self-regulatory signal for the inhibition of the proliferative activity of this cell type through direct or indirect (i.e. SCF-mediated) mechanisms. In addition, we present novel evidence for the ability of ghrelin to modulate the expression of the SCF gene, which may have implications for the mode of action of this molecule in the testis as well as in other physiological systems. This article was published in Endocrinology and referenced in Journal of Diabetes & Metabolism

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords