alexa Global characterization of interferon regulatory factor (IRF) genes in vertebrates: glimpse of the diversification in evolution.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Stem Cell Research & Therapy

Author(s): Huang B, Qi ZT, Xu Z, Nie P

Abstract Share this page

Abstract BACKGROUND: Interferon regulatory factors (IRFs), which can be identified based on a unique helix-turn-helix DNA-binding domain (DBD) are a large family of transcription factors involved in host immune response, haemotopoietic differentiation and immunomodulation. Despite the identification of ten IRF family members in mammals, and some recent effort to identify these members in fish, relatively little is known in the composition of these members in other classes of vertebrates, and the evolution and probably the origin of the IRF family have not been investigated in vertebrates. RESULTS: Genome data mining has been performed to identify any possible IRF family members in human, mouse, dog, chicken, anole lizard, frog, and some teleost fish, mainly zebrafish and stickleback, and also in non-vertebrate deuterostomes including the hemichordate, cephalochordate, urochordate and echinoderm. In vertebrates, all ten IRF family members, i.e. IRF-1 to IRF-10 were identified, with two genes of IRF-4 and IRF-6 identified in fish and frog, respectively, except that in zebrafish exist three IRF-4 genes. Surprisingly, an additional member in the IRF family, IRF-11 was found in teleost fish. A range of two to ten IRF-like genes were detected in the non-vertebrate deuterostomes, and they had little similarity to those IRF family members in vertebrates as revealed in genomic structure and in phylogenetic analysis. However, the ten IRF family members, IRF-1 to IRF-10 showed certain degrees of conservation in terms of genomic structure and gene synteny. In particular, IRF-1, IRF-2, IRF-6, IRF-8 are quite conserved in their genomic structure in all vertebrates, and to a less degree, some IRF family members, such as IRF-5 and IRF-9 are comparable in the structure. Synteny analysis revealed that the gene loci for the ten IRF family members in vertebrates were also quite conservative, but in zebrafish conserved genes were distributed in a much longer distance in chromosomes. Furthermore, all ten different members are clustered in respectively different clades; but the IRF-11 was clustered with one in sea urchin. CONCLUSIONS: In vertebrates, the ten well-characterized IRF family members shared a relatively high degree of similarity in genomic structure and syntenic gene arrangement, implying that they might have been evolved in a similar pattern and with similar selective pressure in different classes of vertebrates. Genome and/or gene duplication, and probably gene shuffling or gene loss might have occurred during the evolution of these IRF family members, but arrangement of chromosome or its segment might have taken place in zebrafish. However, the ten IRF family members in vertebrates and those IRF-like genes in non-vertebrate deuterostomes were quite different in those analyzed characters, as they might have undergone different patterns of evolution.
This article was published in BMC Immunol and referenced in Journal of Stem Cell Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords