alexa GLP-1 receptor activation improves beta cell function and survival following induction of endoplasmic reticulum stress.
Diabetes & Endocrinology

Diabetes & Endocrinology

Journal of Steroids & Hormonal Science

Author(s): Yusta B, Baggio LL, Estall JL, Koehler JA, Holland DP,

Abstract Share this page

Abstract Perturbation of endoplasmic reticulum (ER) homeostasis impairs insulin biosynthesis, beta cell survival, and glucose homeostasis. We show that a murine model of diabetes is associated with the development of ER stress in beta cells and that treatment with the GLP-1R agonist exendin-4 significantly reduced biochemical markers of islet ER stress in vivo. Exendin-4 attenuated translational downregulation of insulin and improved cell survival in purified rat beta cells and in INS-1 cells following induction of ER stress in vitro. GLP-1R agonists significantly potentiated the induction of ATF-4 by ER stress and accelerated recovery from ER stress-mediated translational repression in INS-1 beta cells in a PKA-dependent manner. The effects of exendin-4 on the induction of ATF-4 were mediated via enhancement of ER stress-stimulated ATF-4 translation. Moreover, exendin-4 reduced ER stress-associated beta cell death in a PKA-dependent manner. These findings demonstrate that GLP-1R signaling directly modulates the ER stress response leading to promotion of beta cell adaptation and survival. This article was published in Cell Metab and referenced in Journal of Steroids & Hormonal Science

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version