alexa Glucose starvation and acidosis: effect on experimental metastatic potential, DNA content and MTX resistance of murine tumour cells.


Medicinal Chemistry

Author(s): Schlappack OK, Zimmermann A, Hill RP

Abstract Share this page

Abstract Exposure to oxygen deprivation in vitro has been reported to cause drug resistance in CHO cells (Rice et al., 1986; PNAS 83, 5978) and enhancement of experimental metastatic (colonisation) ability of murine tumour cells (Young et al., 1988; PNAS 85, 9533). Both these studies also demonstrated the induction of a subpopulation of cells with excess DNA content. Since the micromilieu in tumours results in exposure of the tumour cells to conditions of acid pH and nutrient deprivation, as well as hypoxia, we have examined the effect of exposure to acidosis (pH 6.5) and glucose starvation on drug resistance, cellular DNA content and the experimental metastatic ability of KHT sarcoma and B16F1 melanoma cells. Cells were exposed to these conditions for 24 and 48 h and tested for resistance to methotrexate (MTX) or experimental metastatic ability either immediately following these exposures or after 24 or 48 h of recovery in normal growth medium. Both cell lines demonstrated an enhancement of colonisation potential, which was most marked when cells were injected after 48 h of exposure followed by a 24 or 48 h recovery period. Flow cytometric analysis demonstrated an increase in the fraction of KHT cells with excess DNA following both glucose starvation and acidosis we observed only a small increase in MTX resistance following acidic exposure of cells and no change following glucose starvation. Since both acidosis and glucose starvation are known to induce glucose regulated proteins (grp), a subset of the stress protein family, we studied the effect of treatment with another known inducer, 2-deoxyglucose. We found that this agent affected the metastatic efficiency of KHT cells in a manner similar to that observed following exposure to glucose starvation and acidosis. However, further studies are required to establish what role, if any, grp play in this effect. In conclusion this study shows that transient exposure of murine tumour cells to an acidic or glucose deprived environment can cause progression in terms of metastatic potential.
This article was published in Br J Cancer and referenced in Medicinal Chemistry

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version